Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Infect Dis ; 130: 147-152, 2023 May.
Article in English | MEDLINE | ID: covidwho-2320333

ABSTRACT

OBJECTIVES: In this study, we aimed to study the rate of autoantibodies against type I interferons (IFNs) in patients with COVID-19 and analyze its dependence on severity of infection and some other variables. METHODS: A systemic review with the search terms: "COVID-19" or "SARS-CoV-2" and "autoantibodies" or "autoantibody" and "IFN" or "interferon" for the period 20 December 2019 to 15 August 2022 was carried out using PubMed, Embase, Cochrane, and Web of Science. R 4.2.1 software was used for meta-analysis of the published results. Pooled risk ratios and 95% confidence intervals (CIs) were calculated. RESULTS: We identified eight studies involving 7729 patients, of whom 5097 (66%) had severe COVID-19 and 2632 (34%) had mild or moderate symptoms. The positive rate of anti-type-I-IFN-autoantibodies in the total dataset was 5% (95% CI, 3-8%), but reached 10% (95% CI, 7-14%) in those with severe infection. The most common subtypes were anti-IFN-α (89%) and anti-IFN-ω (77%). The overall prevalence in male patients was 5% (95% CI, 4-6%), and in female patients 2% (95% CI, 1-3%). CONCLUSION: Severe COVID-19 is associated with high rates of autoantibodies against type-I-IFN and more so in male than female patients.


Subject(s)
COVID-19 , Interferon Type I , Humans , Male , Female , Autoantibodies , Interferons , Interferon-alpha , SARS-CoV-2
2.
J Allergy Clin Immunol ; 151(4): 818-831, 2023 04.
Article in English | MEDLINE | ID: covidwho-2304590

ABSTRACT

Since the arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, its characterization as a novel human pathogen, and the resulting coronavirus disease 2019 (COVID-19) pandemic, over 6.5 million people have died worldwide-a stark and sobering reminder of the fundamental and nonredundant roles of the innate and adaptive immune systems in host defense against emerging pathogens. Inborn errors of immunity (IEI) are caused by germline variants, typically in single genes. IEI are characterized by defects in development and/or function of cells involved in immunity and host defense, rendering individuals highly susceptible to severe, recurrent, and sometimes fatal infections, as well as immune dysregulatory conditions such as autoinflammation, autoimmunity, and allergy. The study of IEI has revealed key insights into the molecular and cellular requirements for immune-mediated protection against infectious diseases. Indeed, this has been exemplified by assessing the impact of SARS-CoV-2 infection in individuals with previously diagnosed IEI, as well as analyzing rare cases of severe COVID-19 in otherwise healthy individuals. This approach has defined fundamental aspects of mechanisms of disease pathogenesis, immunopathology in the context of infection with a novel pathogen, and therapeutic options to mitigate severe disease. This review summarizes these findings and illustrates how the study of these rare experiments of nature can inform key features of human immunology, which can then be leveraged to improve therapies for treating emerging and established infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2 , Disease Susceptibility
3.
Front Immunol ; 14: 1166725, 2023.
Article in English | MEDLINE | ID: covidwho-2302660

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.


Subject(s)
COVID-19 , Foot-and-Mouth Disease Virus , Male , Animals , Humans , Swine , Mice , Antiviral Agents/pharmacology , Foot-and-Mouth Disease Virus/genetics , Caco-2 Cells , SARS-CoV-2/genetics , RNA, Untranslated
4.
Pharm Res ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2299269

ABSTRACT

PURPOSE: To inhibit the transmission of SARS-CoV-2, we developed engineered exosomes that were conjugated with anti-spike nanobodies and type I interferon ß (IFN-ß). We evaluated the efficacy and potency of nanobody-IFN-ß conjugated exosomes to treatment of SARS-CoV-2 infection. METHODS: Milk fat globule epidermal growth factor 8 (MFG-E8) is a glycoprotein that binds to phosphatidylserine (PS) exposed on the exosomes. We generated nanobody-IFN-ß conjugated exosomes by fusing an anti-spike nanobody and IFN-ß with MFG-E8. We used the SARS-CoV-2 pseudovirus with the spike of the D614G mutant that encodes ZsGreen to mimic the infection process of the SARS-CoV-2. The SARS-CoV-2 pseudovirus was infected with angiotensin-converting enzyme-2 (ACE2) expressing adenocarcinomic human alveolar basal epithelial cells (A549) or ACE2 expressing HEK-blue IFNα/ß cells in the presence of nanobody-IFN-ß conjugated exosomes. By assessing the expression of ZsGreen in target cells and the upregulation of interferon-stimulated genes (ISGs) in infected cells, we evaluated the anti-viral effects of nanobody-IFN-ß conjugated exosomes. RESULTS: We confirmed the anti-spike nanobody and IFN-ß expressions on the exosomes. Exosomes conjugated with nanobody-hIFN-ß inhibited the interaction between the spike protein and ACE2, thereby inhibiting the infection of host cells with SARS-CoV-2 pseudovirus. At the same time, IFN-ß was selectively delivered to SARS-CoV-2 infected cells, resulting in the upregulation of ISGs expression. CONCLUSION: Exosomes conjugated with nanobody-IFN-ß may provide potential benefits in the treatment of COVID-19 because of the cooperative anti-viral effects of the anti-spike nanobody and the IFN-ß.

5.
Front Cell Infect Microbiol ; 12: 1079926, 2022.
Article in English | MEDLINE | ID: covidwho-2198726

ABSTRACT

Virus-Like Particles (VLPs) are nanostructures that share conformation and self-assembly properties with viruses, but lack a viral genome and therefore the infectious capacity. In this study, we produced VLPs by co-expression of VSV glycoprotein (VSV-G) and HIV structural proteins (Gag, Pol) that incorporated a strong sequence-optimized 5'ppp-RNA RIG-I agonist, termed M8. Treatment of target cells with VLPs-M8 generated an antiviral state that conferred resistance against multiple viruses. Interestingly, treatment with VLPs-M8 also elicited a therapeutic effect by inhibiting ongoing viral replication in previously infected cells. Finally, the expression of SARS-CoV-2 Spike glycoprotein on the VLP surface retargeted VLPs to ACE2 expressing cells, thus selectively blocking viral infection in permissive cells. These results highlight the potential of VLPs-M8 as a therapeutic and prophylactic vaccine platform. Overall, these observations indicate that the modification of VLP surface glycoproteins and the incorporation of nucleic acids or therapeutic drugs, will permit modulation of particle tropism, direct specific innate and adaptive immune responses in target tissues, and boost immunogenicity while minimizing off-target effects.


Subject(s)
COVID-19 , Interferon Type I , Vaccines, Virus-Like Particle , Virus Diseases , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Vaccines, Virus-Like Particle/genetics
6.
J Biomed Sci ; 29(1): 55, 2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1965824

ABSTRACT

BACKGROUND: Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS: To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS: We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS: Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.


Subject(s)
Encephalitis, Herpes Simplex , Myocarditis , Ubiquitin-Protein Ligases , Virus Diseases , Animals , Antiviral Agents , Humans , Immunity, Innate , Inflammation/genetics , Mice , Myocarditis/genetics , Myocarditis/virology , Protein Phosphatase 2C , RNA , Ubiquitin-Protein Ligases/genetics
7.
Front Immunol ; 13: 859926, 2022.
Article in English | MEDLINE | ID: covidwho-2141828

ABSTRACT

Efficient protection against coronavirus disease 2019 (COVID-19) has been achieved by immunization with mRNA-based vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, efficient immune responses against this novel virus by vaccination are accompanied by a wide variety of side effects. Indeed, flares or new-onset of autoimmune disorders have been reported soon after the COVID-19 vaccination. Although pro-inflammatory cytokine responses play pathogenic roles in the development of autoimmunity, cytokines charactering COVID-19 vaccination-related autoimmune responses have been poorly understood. Given that mRNA derived from COVID-19 vaccine is a potent inducer for pro-inflammatory cytokine responses, these cytokines might mediate autoimmune responses after COVID-19 vaccination. Here we report a case with new-onset rheumatoid arthritis (RA) following COVID-19 vaccination. Serum concentrations not only of arthrogenic cytokines, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), but also of type I interferon (IFN) were elevated at the active phase in this case. Induction of remission by methotrexate and tocilizumab was accompanied by a marked reduction in serum concentrations of type I IFN, IL-6, and TNF-α. These results suggest that production of type I IFN, IL-6, and TNF-α induced by COVID-19 vaccination might be involved in this case with new-onset RA.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , COVID-19 , COVID-19 Vaccines/adverse effects , Cytokines/therapeutic use , Humans , Interleukin-6 , RNA, Messenger/therapeutic use , SARS-CoV-2 , Tumor Necrosis Factor-alpha , Vaccination/adverse effects
8.
Res Vet Sci ; 152: 236-244, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2069657

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) is recognized as a viroporin that plays important functions in virus budding, assembly and virulence. Our previous study found that PEDV E protein induces endoplasmic reticulum stress (ERS), as well as suppresses the type I interferon (IFN) response, but their link and underlying mechanism remain obscure. To better understand this relationship, we investigated the roles of PEDV E protein-induced ERS in regulating cellular type I IFN production. Our results showed that PEDV E protein localized in the ER and triggered ERS through activation of PERK/eIF2α branch, as revealed by the up-regulated phosphorylation of PERK and eIF2α. PEDV E protein also significantly inhibited both poly(I:C)-induced and RIG-I signaling-mediated type I interferon production. The PERK/eIF2α branch of ERS activated by PEDV E protein led to the translation attenuation of RIG-I signaling-associated antiviral proteins, resulting in the suppression of type I IFN production. However, PEDV E protein had no effect on the mRNA transcription of RIG-I-associated molecules. Moreover, suppression of ERS with 4-PBA, a widely used ERS inhibitor, restored the expression of RIG-I-signaling-associated antiviral proteins and mRNA transcription of IFN-ß and ISGs genes to their normal levels, suggesting that PEDV E protein blocks the production of type I IFN through inhibiting expression of antiviral proteins caused by ERS-mediated translation attenuation. This study elucidates the mechanism by which PEDV E protein specifically modulates the ERS to inhibit type I IFN production, which will augment our understanding of PEDV E protein-mediated virus evasion of host innate immunity.


Subject(s)
Coronavirus Infections , Interferon Type I , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Antiviral Agents , Endoplasmic Reticulum Stress , Cell Line , Eukaryotic Initiation Factor-2 , RNA, Messenger , Coronavirus Infections/veterinary
9.
Int J Mol Sci ; 23(19)2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2066136

ABSTRACT

Coronavirus nonstructural protein 3 (nsp3) is a multi-functional protein, playing a critical role in viral replication and in regulating host antiviral innate immunity. In this study, we demonstrate that nsp3 from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian coronavirus infectious bronchitis virus (IBV) directly interacts with melanoma differentiation-associated gene 5 (MDA5), rendering an inhibitory effect on the MDA5-mediated type I interferon (IFN) response. By the co-expression of MDA5 with wild-type and truncated nsp3 constructs, at least three interacting regions mapped to the papain-like protease (PLpro) domain and two other domains located at the N- and C-terminal regions were identified in SARS-CoV-2 nsp3. Furthermore, by introducing point mutations to the catalytic triad, the deubiquitylation activity of the PLpro domain from both SARS-CoV-2 and IBV nsp3 was shown to be responsible for the suppression of the MDA5-mediated type I IFN response. It was also demonstrated that both MDA5 and nsp3 were able to interact with ubiquitin and ubiquitinated proteins, contributing to the interaction between the two proteins. This study confirms the antagonistic role of nsp3 in the MDA5-mediated type I IFN signaling, highlighting the complex interaction between a multi-functional viral protein and the innate immune response.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Interferon Type I , Interferon-Induced Helicase, IFIH1 , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19 , Coronavirus Infections/immunology , Humans , Infectious bronchitis virus/metabolism , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/metabolism , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitinated Proteins , Viral Nonstructural Proteins/metabolism
10.
Microbiol Spectr ; 10(5): e0232222, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053139

ABSTRACT

Over the last 2 years, several global virus-host interactome studies have been published with SARS-CoV-2 proteins with the purpose of better understanding how specific viral proteins can subvert or utilize different cellular processes to promote viral infection and pathogenesis. However, most of the virus-host protein interactions have not yet been confirmed experimentally, and their biological significance is largely unknown. The goal of this study was to verify the interaction of NSP5, the main protease of SARS-CoV-2, with the host epigenetic factor histone deacetylase 2 (HDAC2) and test if HDAC2 is required for NSP5-mediated inhibition of the type I interferon signaling pathway. Our results show that NSP5 can significantly reduce the expression of a subset of immune response genes such as IL-6, IL-1ß, and IFNß, which requires NSP5's protease activity. We also found that NSP5 can inhibit Sendai virus-, RNA sensor-, and DNA sensor-mediated induction of IFNß promoter, block the IFN response pathway, and reduce the expression of IFN-stimulated genes. We also provide evidence for HDAC2 interacting with IRF3, and NSP5 can abrogate their interaction by binding to both IRF3 and HDAC2. In addition, we found that HDAC2 plays an inhibitory role in the regulation of IFNß and IFN-induced promoters, but our results indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNß gene expression. Taken together, our data show that NSP5 interacts with HDAC2 but NSP5 inhibits the IFNß gene expression and interferon-signaling pathway in an HDAC2-independent manner. IMPORTANCE SARS-CoV-2 has developed multiple strategies to antagonize the host antiviral response, such as blocking the IFN signaling pathway, which favors the replication and spreading of the virus. A recent SARS-CoV-2 protein interaction mapping revealed that the main viral protease NSP5 interacts with the host epigenetic factor HDAC2, but the interaction was not confirmed experimentally and its biological importance remains unclear. Here, we not only verified the interaction of HDAC2 with NSP5, but we also found that HDAC2 also binds to IRF3, and NSP5 can disrupt the IRF3-HDAC2 complex. Furthermore, our results show that NSP5 can efficiently repress the IFN signaling pathway regardless of whether viral infections, RNA, or DNA sensors activated it. However, our data indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNß promoter induction and IFNß gene expression.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2 , Histone Deacetylase 2/metabolism , Interleukin-6 , Signal Transduction , Interferon-beta/genetics , Interferon-beta/metabolism , Interferons , Viral Proteins/genetics , Antiviral Agents/pharmacology , Peptide Hydrolases/metabolism , DNA , RNA , Viral Proteases , Interferon Type I/metabolism
11.
Mol Ther Nucleic Acids ; 29: 343-353, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-1977695

ABSTRACT

We evaluated mRNA and miRNA in COVID-19 patients and elucidated the pathogenesis of COVID-19, including protein profiles, following mRNA and miRNA integration analysis. mRNA and miRNA sequencing was done on admission with whole blood of 5 and 16 healthy controls (HCs) and 10 and 31 critically ill COVID-19 patients (derivation and validation cohorts, respectively). Interferon (IFN)-α2, IFN-ß, IFN-γ, interleukin-27, and IFN-λ1 were measured in COVID-19 patients on admission (day 1, 181 critical/22 non-critical patients) and days 6-8 (168 critical patients) and in 19 HCs. In the derivation cohort, 3,488 mRNA and 31 miRNA expressions were identified among differentially expressed RNA expressions in the patients versus those in HCs, and 2,945 mRNA and 32 miRNA expressions in the validation cohort. Canonical pathway analysis showed the IFN signaling pathway to be most activated. The IFN-ß plasma level was elevated in line with increased severity compared with HCs, as were IFN-ß downstream proteins, such as interleukin-27. IFN-λ1 was higher in non-critically ill patients versus HCs but lower in critical than non-critical patients. Integration of mRNA and miRNA analysis showed activated IFN signaling. Plasma IFN protein profile revealed that IFN-ß (type I) and IFN-λ1 (type III) played important roles in COVID-19 disease progression.

12.
Nutrients ; 14(11)2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869720

ABSTRACT

Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has been proposed to effectively treat and prevent various viral infections. However, the mechanisms behind its antiviral activity are not completely understood. We investigate here the global transcriptional changes in bone marrow-derived dendritic cells (BMDCs) using RNA-Seq technology. Through both analysis of differentially expressed genes (DEG) and gene set enrichment analysis (GSEA), we found that fucoidan-treated BMDCs were enriched in virus-specific response pathways, including that of SARS-CoV-2, as well as pathways associated with nucleic acid-sensing receptors (RLR, TLR, NLR, STING), and type I interferon (IFN) production. We show that these transcriptome changes are driven by well-known regulators of the inflammatory response against viruses, including IRF, NF-κB, and STAT family transcription factors. Furthermore, 435 of the 950 upregulated DEGs are classified as type I IFN-stimulated genes (ISGs). Flow cytometric analysis additionally showed that fucoidan increased MHCII, CD80, and CD40 surface markers in BMDCs, indicative of greater antigen presentation and co-stimulation functionality. Our current study suggests that fucoidan transcriptionally activates PRR signaling, type I IFN production and signaling, ISGs production, and DC maturation, highlighting a potential mechanism of fucoidan-induced antiviral activity.


Subject(s)
COVID-19 , Dendritic Cells , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Polysaccharides/metabolism , Polysaccharides/pharmacology , SARS-CoV-2
13.
Clin Nutr Open Sci ; 43: 85-94, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1867635

ABSTRACT

Background and aims: COVID-19 has been a devastating pandemic. There are indications that vitamin A is depleted during infections. Vitamin A is important in development and immune homeostasis. It has been used successfully in measles, RSV and AIDS infections. In this study, we aimed to measure the serum retinol levels in severe COVID-19 patients to assess the importance of vitamin A in the COVID-19 pathogenesis. Methods: The serum retinol level was measured in two groups of patients: the COVID-19 group, which consisted of 27 severe COVID-19 patients hospitalized in the intensive care unit with respiratory failure, and the control group, which consisted of 23 patients without COVID-19 symptoms. Results: The mean serum retinol levels were 0.37 mg/L in the COVID-19 group and 0.52 mg/L in the control group. The difference between the serum retinol levels in the two groups was statistically significant. There was no significant difference in retinol levels between different ages and genders within the COVID-19 group. Comorbidity did not affect serum retinol levels. Conclusion: The serum retinol level was significantly lower in patients with severe COVID-19, and this difference was independent of age or underlying comorbidity. Our data show that retinol and retinoic acid signaling might be important in immunopathogenesis of COVID-19.

14.
Front Immunol ; 13: 855230, 2022.
Article in English | MEDLINE | ID: covidwho-1862604

ABSTRACT

Most children are less severely affected by coronavirus-induced disease 2019 (COVID-19) than adults, and thus more difficult to study progressively. Here, we provide a neonatal nonhuman primate (NHP) deep analysis of early immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in blood and mucosal tissues. In addition, we provide a comparison with SARS-CoV-2-infected adult NHP. Infection of the neonate resulted in a mild disease compared with adult NHPs that develop, in most cases, moderate lung lesions. In concomitance with the viral RNA load increase, we observed the development of an early innate response in the blood, as demonstrated by RNA sequencing, flow cytometry, and cytokine longitudinal data analyses. This response included the presence of an antiviral type-I IFN gene signature, a persistent and lasting NKT cell population, a balanced peripheral and mucosal IFN-γ/IL-10 cytokine response, and an increase in B cells that was accompanied with anti-SARS-CoV-2 antibody response. Viral kinetics and immune responses coincided with changes in the microbiota profile composition in the pharyngeal and rectal mucosae. In the mother, viral RNA loads were close to the quantification limit, despite the very close contact with SARS-CoV-2-exposed neonate. This pilot study demonstrates that neonatal NHPs are a relevant model for pediatric SARS-CoV-2 infection, permitting insights into the early steps of anti-SARS-CoV-2 immune responses in infants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Child , Cytokines , Humans , Infant, Newborn , Pilot Projects , Primates/genetics , RNA, Viral
16.
Mol Ther Nucleic Acids ; 27: 1225-1234, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1676870

ABSTRACT

The SARS-CoV-2 pandemic has underscored the need for rapidly usable prophylactic and antiviral treatments against emerging viruses. The targeted stimulation of antiviral innate immune receptors can trigger a broad antiviral response that also acts against new, unknown viruses. Here, we used the K18-hACE2 mouse model of COVID-19 to examine whether activation of the antiviral RNA receptor RIG-I protects mice from lethal SARS-CoV-2 infection and reduces disease severity. We found that prophylactic, systemic treatment of mice with the specific RIG-I ligand 3pRNA, but not type I interferon, 1-7 days before viral challenge, improved survival of mice by up to 50%. Survival was also improved with therapeutic 3pRNA treatment starting 1 day after viral challenge. This improved outcome was associated with lower viral load in oropharyngeal swabs and in the lungs and brains of 3pRNA-treated mice. Moreover, 3pRNA-treated mice exhibited reduced lung inflammation and developed a SARS-CoV-2-specific neutralizing antibody response. These results demonstrate that systemic RIG-I activation by therapeutic RNA oligonucleotide agonists is a promising strategy to convey effective, short-term antiviral protection against SARS-CoV-2 infection, and it has great potential as a broad-spectrum approach to constrain the spread of newly emerging viruses until virus-specific therapies and vaccines become available.

17.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1674673

ABSTRACT

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Subject(s)
Adjuvants, Vaccine/therapeutic use , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccine Development/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/therapeutic use , Cells, Cultured , Chick Embryo , Gene Expression Regulation/drug effects , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/pharmacology , Interferon Type I/genetics , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Primary Prevention/methods , SARS-CoV-2/immunology
18.
Front Immunol ; 12: 735866, 2021.
Article in English | MEDLINE | ID: covidwho-1590052

ABSTRACT

Bats are the only mammals with self-powered flight and account for 20% of all extant mammalian diversity. In addition, they harbor many emerging and reemerging viruses, including multiple coronaviruses, several of which are highly pathogenic in other mammals, but cause no disease in bats. How this symbiotic relationship between bats and viruses exists is not yet fully understood. Existing evidence supports a specific role for the innate immune system, in particular type I interferon (IFN) responses, a major component of antiviral immunity. Previous studies in bats have shown that components of the IFN pathway are constitutively activated at the transcriptional level. In this study, we tested the hypothesis that the type I IFN response in bats is also constitutively activated at the protein level. For this, we utilized highly sensitive Single Molecule (Simoa) digital ELISA assays, previously developed for humans that we adapted to bat samples. We prospectively sampled four non-native chiroptera species from French zoos. We identified a constitutive expression of IFNα protein in the circulation of healthy bats, and concentrations that are physiologically active in humans. Expression levels differed according to the species examined, but were not associated with age, sex, or health status suggesting constitutive IFNα protein expression independent of disease. These results confirm a unique IFN response in bat species that may explain their ability to coexist with multiple viruses in the absence of pathology. These results may help to manage potential zoonotic viral reservoirs and potentially identify new anti-viral strategies.


Subject(s)
Chiroptera/blood , Immunity, Innate , Interferon-alpha/blood , Viruses/immunology , Animals , Cell Line , Chiroptera/genetics , Chiroptera/immunology , Chiroptera/virology , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation , Host-Pathogen Interactions , Interferon-alpha/genetics , Species Specificity , Symbiosis , Transcription, Genetic , Viruses/pathogenicity
19.
Wellcome Open Res ; 6: 38, 2021.
Article in English | MEDLINE | ID: covidwho-1478483

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation. Results: Expansion of the circulating neutrophil compartment and the presence of activated low and normal density mature and immature neutrophil populations occurs in ARDS, irrespective of cause. Release of neutrophil granule proteins, neutrophil activation of the clotting cascade and upregulation of the Mac-1 platelet binding complex with formation of neutrophil platelet aggregates is exaggerated in COVID-19 ARDS. Importantly, activation of components of the neutrophil type I interferon responses is seen in ARDS following infection with SARS-CoV-2, with associated rewiring of neutrophil metabolism, and the upregulation of antigen processing and presentation. Whilst dexamethasone treatment constricts the immature low density neutrophil population, it does not impact upon prothrombotic hyperinflammatory neutrophil signatures. Conclusions: Given the crucial role of neutrophils in ARDS and the evidence of a disordered myeloid response observed in COVID-19 patients, this work maps the molecular basis for neutrophil reprogramming in the distinct clinical entities of COVID-19 and non-COVID-19 ARDS.

20.
Eur J Immunol ; 52(1): 54-61, 2022 01.
Article in English | MEDLINE | ID: covidwho-1439676

ABSTRACT

Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize ssRNA. Proteolytic cleavage of TLR7 protein is required for its functional maturation in the endosomal compartment. Structural studies demonstrated that the N- and C-terminal domains of TLR7 are connected and involved in ligand binding after cleavage. Hydroxychloroquine (HCQ), an antimalarial drug, has been studied for its antiviral effects. HCQ increases pH in acidic organelles and has been reported to potently inhibit endosomal TLR activation. Whether HCQ can prevent endogenous TLR7 cleavage in primary immune cells, such as plasmacytoid DCs (pDCs), had never been examined. Here, using a validated anti-TLR7 antibody suitable for biochemical detection of native TLR7 protein, we show that HCQ treatment of fresh PBMCs, CAL-1 leukemic, and primary human pDCs inhibits TLR7 cleavage and results in accumulation of full-length protein. As a consequence, we observe an inhibition of pDC activation in response to TLR7 stimulation with synthetic ligands and viruses including inactivated SARS-CoV2, which we show herein activates pDCs through TLR7-signaling. Together, our finding suggests that the major pathway by which HCQ inhibits ssRNA sensing by pDCs may rely on its capacity to inhibit endosomal acidification and the functional maturation of TLR7 protein.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Hydroxychloroquine/pharmacology , Proteolysis/drug effects , SARS-CoV-2/immunology , Toll-Like Receptor 7/immunology , Cell Line , Endosomes/immunology , Humans , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL